Harmonic Maps and Torse-Forming Vector Fields
نویسندگان
چکیده
منابع مشابه
On Concircular and Torse-forming Vector Fields on Compact Manifolds
In this paper we modify the theorem by E. Hopf and found results and conditions, on which concircular, convergent and torse-forming vector fields exist on (pseudo-) Riemannian spaces. These results are applied for conformal, geodesic and holomorphically projective mappings of special compact spaces without boundary.
متن کاملHarmonic-killing Vector Fields *
In this paper we consider the harmonicity of the 1-parameter group of local infinitesimal transformations associated to a vector field on a (pseudo-) Riemannian manifold to study this class of vector fields, which we call harmonic-Killing vector fields.
متن کاملHarmonic-Killing vector fields on Kähler manifolds
In a previous paper we have considered the harmonicity of local infinitesimal transformations associated to a vector field on a (pseudo)-Riemannian manifold to characterise intrinsi-cally a class of vector fields that we have called harmonic-Killing vector fields. In this paper we extend this study to other properties, such as the pluriharmonicity and the α-pluriharmonicity (α harmonic 2-form) ...
متن کاملHarmonic Maps and Biharmonic Maps
This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.
متن کاملHarmonic Analysis on Vector Spaces over Finite Fields
• (i) G = ZN = Z/NZ = {0, 1, 2, ....., N − 1} with addition modulo N . For 0 ≤ n ≤ N − 1 let γn : G → S, γn(m) = exp(2πimn/N). Then {γ0, ....., γN−1} is a complete list of the characters so that ZN is isomorphic to ZN . An example of a primitive N ’th root of unity is ω := exp 2πi/N . • (ii) G = T = R/Z; for n ∈ Z let γn : G→ S, γn(x) = exp(2πinx). Then G∗ = {γn : n ∈ Z} so that G∗ is isomorphi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Electronic Journal of Geometry
سال: 2020
ISSN: 1307-5624
DOI: 10.36890/iejg.555344